Uniwersytet im. Adama Mickiewicza w Poznaniu - Centralny System Uwierzytelniania
Strona główna

Advances in Neuroscience

Informacje ogólne

Kod przedmiotu: 23-PIE-AIN
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Advances in Neuroscience
Jednostka: Wydział Psychologii i Kognitywistyki
Grupy: Moodle - przedmioty Szkoły Nauk Społecznych
oferta AMU-PIE na semestr zimowy
Przedmioty AMU-PIE na Wydziale Psychologii i Kognitywistyki
Przedmioty na Wydziale Psychologii i Kognitywistyki
Punkty ECTS i inne: 5.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: język angielski
Rodzaj przedmiotu:

fakultatywne

Kierunek studiów:

(tylko po angielsku) This is a compulsory course in our Cognitive Science program (the third term of the M.Sc. program offered at the Faculty of Psychology and Cognitive Science)


You can chose it and take it for credit if it is within the scope of your interests.

Poziom przedmiotu:

II stopień

Cele kształcenia:

(tylko po angielsku) The goals of the lecture series are the following:


• to review the state-of-the-art in anatomical, functional, and network approaches to vision, haptics, the control of behavior, and language processing,

• to study the latest and impactful research reports in each of these domains,

• to understand the essentials of research design, data analyses, and interpretations of their outcomes in the area of functional neuroimaging (fMRI) and neurostimulation (TMS).

Moduł zajęć/przedmiotu prowadzony zdalnie (e-learning):

(tylko po angielsku) While most of the lectures in each academic year are held on site (in a lecture hall), there is a possibility that, in a justified case, a lecture may be taught remotely (online).

Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji:

(tylko po angielsku) Pre-requisites in terms of knowledge, skills and social competences (where relevant)


Knowledge of basic concepts in vision, somatosensation, perception, action, and language processing will be helpful in understanding of the discussed lecture material. Yet, there are no specific prerequisites because the lecture and recommended textbook chapters cover them all.

Informacja o tym, gdzie można zapoznać się z materiałami do zajęć:

(tylko po angielsku) All the materials will be available in a dedicated folder on the MS TEAMS platform.


Just in case, or if really necessary, some or all the materials will be made at: http://krolgreg.home.amu.edu.pl

Metody prowadzenia zajęć umożliwiające osiągnięcie założonych EK:

(tylko po angielsku) The lectures will give some background, and will provide specific discussion of major findings from the selected/discussed papers.

Nakład pracy studenta (punkty ECTS):

(tylko po angielsku) ECTS: 5 - It is estimated that around three hours of additional studying each week would be necessary to read the assigned papers, take relevant notes and prepare for the exam.

Skrócony opis: (tylko po angielsku)

As a scientific study of the nervous system, contemporary Neuroscience is a discipline at the crossroads of biology, physiology, anatomy, kinesiology, neuro- and experimental psychology, as well as mathematical modeling. Its ultimate goal is to understand both the fundamental and functional properties of neural systems, and the emerging behavior. Indeed, as relevant to many traditional social science disciplines, it is a very rapidly developing branch of science.

Pełny opis: (tylko po angielsku)

The lectures will cover a wide range of recent neuroscience review and research papers on visual, sensorimotor, and more general task positive, and task negative processing in the human brain. A rich array of research questions will be addressed, starting from how the brain allows us to see and "feel" (haptically) objects, their functions, letters/words and their meaning, how and why people fail in these tasks, and what insights contemporary neuroscientists can bring to support their neurorehabilitation.

SYLLABUS:

Week 1: Introduction, and overview of course objectives

Week 2: Methods (1) - Resting state connectivity in neurobiology and medicine

Week 3: Methods (2) - Diffusion-weighted tractography and disconnection mapping

Week 4: Brain maps and multi-modal parcellations of the cerebral cortex

Week 5: Visual vs. multimodal processing in the human brain

Week 6: The somatosensory plasticity and compensation of action control

Week 7: Sensorimotor-independent development of hand and tool selectivity in the visual cortex

Week 8: Function/affordance and its processing in different brain pathways

Week 9: Neural bases of tool use and generalized motor programs

Week 10: The neural underpinnings of object perception and basic reading skills

Week 11: Origins of the specialization for letters and numbers in occipito-temporal cortex

Week 12: The language control networks, their intrinsic connectivity, and types of lateralization

Week 13: The origins of atypical language laterality and its relation to other brain functions

Week 14: Structural and functional brain asymmetries in human situs inversus totalis

Week 15: The neural underpinnings of sex addiction and/or sex differences

Literatura: (tylko po angielsku)

Selected chapters/sections from the following textbooks will offer some "basic" background information:

- Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (2013). Principles of Neural Science, Fifth Edition. McGraw-Hill Companies, USA.

- Palmer, S. E. (1999). Vision Science. Photons to phenomenology. Cambridge, Massachusetts: The MIT Press.

Basic and supplemental references:

1) Thiebaut de Schotten, M., Forkel, S.J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505-510. doi: 10.1126/science.abq2591

2) Markello, R.D., Hansen, J.Y., Liu, Z.Q., Bazinet, V., Shafiei, G., Suarez, L.E., . . . Misic, B. (2022). neuromaps: structural and functional interpretation of brain maps. Nat Methods, 19(11), 1472-1479. doi: 10.1038/s41592-022-01625-w

3) van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B., Edwards, D. (2022). Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev, 138, 104702. doi: 10.1016/j.neubiorev.2022.104702

4) Lv, H., Wang, Z., Tong, E., Williams, L.M., Zaharchuk, G., Zeineh, M., . . . Wintermark, M. (2018). Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am J Neuroradiol, 39(8), 1390-1399. doi: 10.3174/ajnr.A5527

5) Waller, L., Erk, S., Pozzi, E., Toenders, Y.J., Haswell, C.C., Buttner, M., . . . Veer, I.M. (2022). ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data. Hum Brain Mapp, 43(9), 2727-2742. doi: 10.1002/hbm.25829

6) Thiebaut de Schotten, M., Foulon, C., Nachev, P. (2020). Brain disconnections link structural connectivity with function and behaviour. Nat Commun, 11(1), 5094. doi: 10.1038/s41467-020-18920-9

7) Forkel, S.J., Labache, L., Nachev, P., Thiebaut de Schotten, M., Hesling, I. (2022). Stroke disconnectome decodes reading networks. Brain Struct Funct, 227(9), 2897-2908. doi: 10.1007/s00429-022-02575-x

8) Tremblay, P., Dick, A.S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang, 162, 60-71. doi: 10.1016/j.bandl.2016.08.004

9) Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., . . . Van Essen, D.C. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178. doi: 10.1038/nature18933

10) Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M. (2020). Automated anatomical labelling atlas 3. Neuroimage, 206, 116189. doi: 10.1016/j.neuroimage.2019.116189

11) Alvarez, I., Finlayson, N.J., Ei, S., de Haas, B., Greenwood, J.A., Schwarzkopf, D.S. (2021). Heritable functional architecture in human visual cortex. Neuroimage, 239, 118286. doi: 10.1016/j.neuroimage.2021.118286

12) van den Hurk, J., Van Baelen, M., Op de Beeck, H.P. (2017). Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci U S A, 114(22), E4501-E4510. doi: 10.1073/pnas.1612862114

13) Striem-Amit, E. (2017). Brain Plasticity: When the Feet and Mouth Replace the Hand. Curr Biol, 27(9), R356-R358. doi: 10.1016/j.cub.2017.03.057

14) Striem-Amit, E., Vannuscorps, G., Caramazza, A. (2018). Plasticity based on compensatory effector use in the association but not primary sensorimotor cortex of people born without hands. Proc Natl Acad Sci U S A, 115(30), 7801-7806. doi: 10.1073/pnas.1803926115

15) Striem-Amit, E., Vannuscorps, G., Caramazza, A. (2017). Sensorimotor-independent development of hands and tools selectivity in the visual cortex. Proc Natl Acad Sci U S A, 114(18), 4787-4792. doi: 10.1073/pnas.1620289114

16) Hahamy, A., Macdonald, S.N., van den Heiligenberg, F., Kieliba, P., Emir, U., Malach, R., . . . Makin, T.R. (2017). Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr Biol, 27(9), 1350-1355. doi: 10.1016/j.cub.2017.03.053

17) van den Heiligenberg, F.M.Z., Orlov, T., Macdonald, S.N., Duff, E.P., Henderson Slater, D., Beckmann, C.F., . . . Makin, T.R. (2018). Artificial limb representation in amputees. Brain, 141(5), 1422-1433. doi: 10.1093/brain/awy054

18) Styrkowiec, P.P., Nowik, A.M., Kroliczak, G. (2019). The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage, 194, 149-162. doi: 10.1016/j.neuroimage.2019.03.043

19) Wandelt, S.K., Kellis, S., Bjanes, D.A., Pejsa, K., Lee, B., Liu, C., Andersen, R.A. (2022). Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human. Neuron, 110(11), 1777-1787 e1773. doi: 10.1016/j.neuron.2022.03.009

20) Osiurak, F., Rossetti, Y., & Badets, A. (2017). What is an affordance? 40 years later. Neuroscience & Biobehavioral Reviews, 77, 403-417.

21) Osiurak, F., Lesourd, M., Delporte, L., & Rossetti, Y. (2018). Tool Use and Generalized Motor Programs: We All Are Natural Born Poly-Dexters. Sci Rep, 8, 10429.

22) Kroliczak, G., Buchwald, M., Kleka, P., Klichowski, M., Potok, W., Nowik, A. M., Randerath, J., & Piper, B. J. (2021). Manual praxis and language-production networks, and their links to handedness. Cortex, 140, 110-127. https://doi.org/10.1016/j.cortex.2021.03.022

23) Dehaene, S., Cohen, L., Morais, J., Kolinsky, R., 2015. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience 16, 234-244.

24) Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Sci Adv, 5(9), eaax0262. https://doi.org/10.1126/sciadv.aax0262

25) Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., Mellet, E., Petit, L., & Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS ONE, 9(6), e101165. https://doi.org/10.1371/journal.pone.0101165

26) Labache, L., Joliot, M., Saracco, J., Jobard, G., Hesling, I., Zago, L., Mellet, E., Petit, L., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2019). A SENtence Supramodal Areas AtlaS (SENSAAS) based on multiple task-induced activation mapping and graph analysis of intrinsic connectivity in 144 healthy right-handers. Brain Struct Funct, 224(2), 859-882. https://doi.org/10.1007/s00429-018-1810-2

27) Labache, L., Mazoyer, B., Joliot, M., Crivello, F., Hesling, I., & Tzourio-Mazoyer, N. (2020). Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries. Elife, 9. https://doi.org/10.7554/eLife.58722

28) Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19, 374-382.

29) Daitch, A. L., Foster, B. L., Schrouff, J., Rangarajan, V., Kasikci, I., Gattas, S., & Parvizi, J. (2016). Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc Natl Acad Sci U S A, 113(46), E7277-E7286. https://doi.org/10.1073/pnas.1608434113

30) Yeo, D.J., Wilkey, E.D., & Price, G.R. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 78, 145-160.

31) Vingerhoets, G., Li, X., Hou, L., Bogaert, S., Verhelst, H., Gerrits, R., et al. (2018). Brain structural and functional asymmetry in human situs inversus totalis. Brain Struct Funct, 223(4), 1937-1952. doi: 10.1007/s00429-017-1598-5

32) Vingerhoets, G., Gerrits, R., & Bogaert, S. (2018). Atypical brain functional segregation is more frequent in situs inversus totalis. Cortex, 106, 12-25. https://doi.org/10.1016/j.cortex.2018.04.012

33) Gerrits, R., Verhelst, H., & Vingerhoets, G. (2020). Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A, 117(25), 14057-14065. https://doi.org/10.1073/pnas.2002981117

34) Gerrits, R. (2022). Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev. https://doi.org/10.1007/s11065-022-09575-y

35) Liberg, B., Gorts-Oberg, K., Jokinen, J., Savard, J., Dhejne, C., Arver, S., Fuss, J., Ingvar, M., & Abe, C. (2022). Neural and behavioral correlates of sexual stimuli anticipation point to addiction-like mechanisms in compulsive sexual behavior disorder. J Behav Addict, 11(2), 520-532. DOI: 10.1556/2006.2022.00035

36) Liu, S., Seidlitz, J., Blumenthal, J. D., Clasen, L. S., & Raznahan, A. (2020). Integrative structural, functional, and transcriptomic analyses of sex-biased brain organization in humans. Proc Natl Acad Sci U S A, 117(31), 18788-18798. https://doi.org/10.1073/pnas.1919091117

37) Kiesow, H., Dunbar, R. I. M., Kable, J. W., Kalenscher, T., Vogeley, K., Schilbach, L., Marquand, A. F., Wiecki, T. V., & Bzdok, D. (2020). 10,000 social brains: Sex differentiation in human brain anatomy. Sci Adv, 6(12), eaaz1170. https://doi.org/10.1126/sciadv.aaz1170

Efekty uczenia się: (tylko po angielsku)

Upon the completion of the lecture series, students will be re-acquainted with basic concepts from each of the reviewed domains, and familiarized with selected advanced models and approaches to studying visual, sensory/motor and language processing in the brain.

Metody i kryteria oceniania: (tylko po angielsku)

The final exam will cover the material from the studied papers / chapters, and the related slides.

The AIN exam consists of only one part, involving answers to 40-50 multiple-choice questions.

Example questions are given below:

(1) Connectome Workbench is a program implementing ____________ from the Human Connectome Project (HCP). Illustrated in Picture X, this atlas contains ____________ bounded by ____________ cortical architecture, function, connectivity, and/or topography, in a precisely aligned group average of ____________ adults. An automated classifier can detect the presence of ____________ of these cortical areas in new subjects.

A) multi-modal cortical atlas … 210 areas per hemisphere … gradual changes in … 180 healthy young … … the majority

B) the most complex cortical atlas … 97 new and 83 previously reported areas … sharp changes in … 180 healthy middle-aged … the majority

C) the most complex cortical atlas … 83 new and 97 previously reported areas … gradual changes in … 210 healthy middle-aged … the vast majority

D) multi-modal cortical atlas … 180 areas per hemisphere … sharp changes in … 210 healthy young … the vast majority

(2) A study by van der Hurk et al (2017). PNAS, shows that in the visual-processing region, ventral-temporal cortex (VTC), visual experience is not critical for its fundamental organizational property, namely category selectivity. The results of their fMRI study – see Picture Y – reveal that in congenitally blind participants, face-, body-, scene-, and object-related natural sounds evoked responses which (as shown by surface-based multivoxel pattern analysis) indicate ____________.

A) robust discriminatory responses elicited by the four categories, and these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls

B) weak discriminatory responses elicited by the four categories, but these patterns of activity in blind subjects could somehow predict the visual categories in sighted controls

C) little discriminatory responses elicited by the four categories, but these patterns of activity in blind subjects could partially predict the visual categories in sighted controls

D) no discriminatory responses elicited by the four categories, but these patterns of activity in blind subjects could nevertheless be found close to the visual categories in sighted controls

51% of correct answers are necessary to pass the exam, i.e., to get a grade of 3; > 60% = 3.5; > 70% = 4; > 80% = 4.5; and > 90% = 5

Praktyki zawodowe: (tylko po angielsku)

N.A.

Zajęcia w cyklu "Semestr zimowy 2020/2021" (zakończony)

Okres: 2020-10-01 - 2021-02-28
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Króliczak
Prowadzący grup: Grzegorz Króliczak
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2021/2022" (zakończony)

Okres: 2021-10-01 - 2022-02-23
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Króliczak
Prowadzący grup: Grzegorz Króliczak
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2022/2023" (zakończony)

Okres: 2022-10-01 - 2023-02-26
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Króliczak
Prowadzący grup: Grzegorz Króliczak
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2023/2024" (zakończony)

Okres: 2023-10-01 - 2024-02-25
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Wykład, 30 godzin więcej informacji
Koordynatorzy: Grzegorz Króliczak
Prowadzący grup: Grzegorz Króliczak
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet im. Adama Mickiewicza w Poznaniu.
ul. Wieniawskiego 1
61-712 Poznań
tel: +48 61 829 4000
kontakt deklaracja dostępności USOSweb 7.0.3.0 (2024-03-22)